
Hierarchical Spatial Hashing
for Real-time Collision Detection

Mathias Eitz
Department of Computer Science

Shanghai Jiao Tong University

Gu Lixu
Department of Computer Science

Shanghai Jiao Tong University

Abstract

We present a new, efficient and easy to use collision
detection scheme for real-time collision detection between
highly deformable tetrahedral models. Tetrahedral models
are a common representation of volumetric meshes which
are often used in physically based simulations, e.g. in vir-
tual surgery. In a deformable models environment collision
detection usually is a performance bottleneck since the data
structures used for efficient intersection tests need to be re-
built or modified frequently. Our approach minimizes the
time needed for building a collision detection data struc-
ture. We employ an infinite hierarchical spatial grid in
which for each single tetrahedron in the scene a well fit-
ting grid cell size is computed. A hash function is used to
project occupied grid cells into a finite 1D hash table. Only
primitives mapped to the same hash index indicate a possi-
ble collision and need to be checked for intersections. This
results in a high performance collision detection algorithm
which does not depend on user defined parameters and thus
flexibly adapts to any scene setup.

1. Introduction

Deformable models based on tetrahedral meshes are
commonly used in interactive real-time applications [16].
Their deformations are physically based responses to inter-
nal and external forces like gravity, collision forces and user
interactions. A numerically stable, interactive simulation
of those deformations requires high update rates which de-
mands extremely efficient collision detection algorithms.

During each step of a deformable models simulation,
the simulated objects change their shape slightly due to the
involved forces. A collision detection algorithm needs to
adapt to those changes in shape, either by modifying (often
difficult) or by completely recomputing (often slow) its in-
ternal data structures. A recomputing approach has several
advantages over an update approach. It is easier to imple-
ment since we do not need to consider complicated update

rules. It is very general, strong deformations, cuts or frac-
tures of the underlying meshes are handled implicitly. Fi-
nally, it returns exact results of the collision state at any
time.

We propose a new collision detection algorithm com-
prising all those advantages that reports intersections of
vertices with object primitives. It is based on a hierar-
chical spatial grid whose occupancy by primitives can be
computed extremely efficient for any kind of scene. This
method was inspired by the work of Teschner et al. [15],
but improves upon speed, is completely independent of user
defined parameters and most important, flexibly adapts to
strong changes in the simulated meshes.

Our collision detection algorithm is made up of two
passes. In the first pass, the so-called “mapping-phase”,
we map all tetrahedra in the scene into a hierarchical grid.
Therefore, we determine a well fitting grid cell size for each
single tetrahedron and then map it into that cubical tiling of
space that best fits its size. In scenes with primitives of dif-
ferent sizes this results in a set of cubical tilings of space
with differing resolutions, a hierarchical grid. This hierar-
chical grid is not stored explicitly, instead we map occupied
grid cells to a single 1D hash table.

In the second pass, the so-called “intersection-phase” we
test all vertices in the scene for intersection with the tetra-
hedra already stored in the hash table. For each vertex, we
determine those grid cells that enclose the current vertex at
all tiling resolutions. Next, we determine all tetrahedra that
have been mapped to the same grid cells as the vertex by
multiple lookups in the hash table. Finally, the vertex is
tested for intersection with the resulting set of tetrahedra.

We analyze all parameters that influence the perfor-
mance of the proposed algorithm, namely the size of the
used hash table, the hash function and the narrow-phase in-
tersection test and compare the results against the regular
grid algorithm. Our proposed algorithm is not limited to
tetrahedral meshes, instead it can be used with any kind of
meshes, only the narrow-phase intersection test needs to be
adapted to the used primitives.

IEEE International Conference on Shape Modeling and Applications(SMI'07)
0-7695-2815-5/07 $20.00 © 2007

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:15:52 UTC from IEEE Xplore. Restrictions apply.

2. Related Work

Many efficient collision detection algorithms exist for
scenes of rigid objects, i.e. scenes with models of fixed
shape and size. The employed data structures are usually
precomputed, attention is only turned to the efficiency of
the actual collision tests. The situation is very different
in scenes with dynamically deforming models. Since the
shape and size of the involved models potentially changes
each simulation step, the underlying collision detection al-
gorithm needs to adapt its internal data structure accord-
ingly, either by a complete rebuild [15] or by an update ex-
ploiting potential coherence between the simulation steps
[9, 11, 2]. Typical collision detection approaches include
bounding volume hierarchies [3, 6, 19, 8] and spatial subdi-
vision methods [1, 10, 15]. For an extensive overview about
the state-of-the-art in collision detection see [5, 17].

Uniform grid subdivision methods combined with hash-
ing to reduce storage requirements have been used for a long
time but have been recently made very popular by the work
of Teschner et al. [15]. Turk [18] uses an uniform grid
approach to determine collisions between molecular mod-
els represented by collections of spheres. He states that an
uniform grid approach is perfectly suitable in this special
case, since the radii of organic atoms do not differ signifi-
cantly and therefore a small upper bound for the number of
atoms per grid cell exists. Overmars [14] employs a uniform
grid approach combined with hashing to accelerate point lo-
cation in fat subdivisions of n-dimensional space (subdivi-
sions that contain no long and skinny cells). He derives gen-
eral upper bounds both on storage requirement and point lo-
cation time. Mirtich [12] employs a hierarchical hash table
to efficiently detect intersections of axis-aligned bounding
boxes which are used to represent swept volumes of moving
objects over a time interval. His approach requires a prepro-
cessing step to determine a range of appropriate hash table
resolutions. In [4], a hybrid approach is presented. Space is
subdivided by a coarse regular grid where each non-empty
grid cell stores a reference to an oriented bounding boxes
tree of the primitives contained in it. Teschner et al. [15]
use a uniform grid approach to accelerate collision detec-
tion for deformable models consisting of tetrahedra. They
are the first to give a detailed analysis of all involved param-
eters including hash table size and optimal grid cell size.

We employ a new, general hierarchical spatial hashing
approach for fast collision detection between tetrahedral de-
formable models. Tetrahedra are mapped into an implicit
hierarchical grid where the grid cell size is specifically op-
timized for each single tetrahedron in the scene. Neverthe-
less, the only data structure that has to be stored in memory
is a simple 1D hash table. We analyze all important pa-
rameters of the approach focusing on how to automatically
determine a well fitting grid cell size for a tetrahedron.

3. Broad Phase Collision Detection

The aim of broad phase collision detection is to effi-
ciently sort out all those pairs of primitives that do not possi-
bly collide. Space partitioning achieves this goal by storing
primitives in disjoint partitions of space. Only when multi-
ple primitives occur in a single partition, a possible collision
between those primitives has been detected.

We are partitioning space into a hierarchy of cubical
tilings with different resolutions. Each tiling consist of a
potentially infinite number of cubical axis-aligned so-called
grid cells with edge length k ∈ R. We associate a cer-
tain tiling with a hierarchy level by the so-called subdivi-
sion level l ∈ Z of that tiling. The subdivision level l is an
unique identifier for the hierarchy level of a certain tiling.
Each point in space (x, y, z) can now unambiguously be as-
sociated with a certain grid cell of subdivision level l by
defining the mapping

 x
y
z

→

bx/kc
by/kc
bz/kc

l

 (1)

For a tetrahedron t a tiling of subdivision level l is chosen
such that the edge length k of the grid cells of that tiling
“optimally” fits the size of t. We define k to be “optimal”,
when it is chosen such that a tetrahedron is not mapped into
more than eight grid cells. Let s = size (t) be the length of
the longest edge of the axis-aligned bounding box of t. We
then define the subdivision level l as:

l = dlog2 (s)e (2)

and the grid cell size k which is to be used for the map-
ping of t as:

k = 2l (3)

The grid cell size k is now defined such that in an one-
dimensional case a primitive never occupies more than two,
in a two-dimensional case never more than four and in a
three-dimensional case never more than eight grid cells.
This choice has been made in order to have a hard upper
bound on the number of operations we need to map all tetra-
hedra into the hierarchical grid.

Mapping phase In a first step, we process all tetrahedra
in the scene. For each tetrahedron t, its axis-aligned bound-
ing box b and its associated subdivision level l according to
Equation 2 are determined. The axis-aligned bounding box
is stored and the subdivision level l inserted into the set of
all subdivision levels occurred so far during this step. Tetra-
hedron t is then mapped into all grid cells of the tiling with

IEEE International Conference on Shape Modeling and Applications(SMI'07)
0-7695-2815-5/07 $20.00 © 2007

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:15:52 UTC from IEEE Xplore. Restrictions apply.

p

A B C

A

B B

C C

l=0

l=1

l=2

k=2^l=4

s=3.1

0 2 4 6 88 10

index

B

A

C

B

C

h(6,0)

h(8,0)

h(0,2)

h(3,1)

h(7,0)

h(2,2)

h(4,1)

empty

empty

hash tabletest against p

Figure 1. One-dimensional hierarchical grid with three subdivision levels on the left, corresponding
hash table on the right. Line segments A to C are mapped into those grid cells that are overlapped by
them and have a fitting subdivision level according to Equation 2. The hash table stores a reference
to the objects occupying the grid cells. Point p is tested for intersection with the line segments by
mapping it into the grid cells according to Equation 1 for all three subdivision levels.

subdivision level l that are overlapped by its axis-aligned
bounding box. Each affected grid cell gets mapped into the
hash table, which stores a reference to t.

Let the coordinates (amin, bmin, cmin, l) and
(amax, bmax, cmax, l) be a mapping according to Equa-
tion 1 of b’s corner of minimum (x, y, z) and maximum
(x, y, z) coordinates, respectively. A grid cell with
mapped coordinates (a, b, c, l) is overlapped by b if and
only if amin ≤ a ≤ amax, bmin ≤ b ≤ bmax and
cmin ≤ c ≤ cmax.

The hash value i of an occupied grid cell is then deter-
mined by computing i = hash (a, b, c, l) (refer to Section
3.1 for details on the hash function). A reference to t is
stored in the hash table at index i.

Intersection phase In a second pass, we process all ver-
tices in the scene and test them for intersection with the
tetrahedra mapped in the first step. Therefore, for a cer-
tain vertex v for each used subdivision level l the mapping
(a, b, c, l) of the (x, y, z) coordinate of v is determined ac-
cording to Equation 1. Then, the hash function is used to
determine the hash indices of v (for all l). All tetrahedra
that are stored at those hash indices have to be tested for
intersection with v.

If no tetrahedron is found at a certain hash index, no col-
lision has occurred. Otherwise a potential collision has been
detected and an intersection test has to be performed. For
performance reasons, the intersection test is made up of two
steps: First, v is tested against the axis-aligned bounding
box of t. If v is inside the AABB of t, then an actual ver-
tex/tetrahedron intersection test has to be performed. De-

tails for this intersection test are given in Section 4. If an
intersection of a vertex v with an object is detected and v is
part of that object, a self intersection has been detected, but
only, if v is not part of the penetrated tetrahedron itself.

Example Consider the one-dimensional hierarchical grid
illustrated in Figure 1, where line segments are tested for
intersection with point p. Line segment A has a size
(length) of s = 3.1. According to Equation 2, it gets
mapped into that tiling of space with subdivision level
l = dlog2 (3.1)e = 2. A occupies all grid cells of subdi-
vision level 2, that are “overlapped” by it. Now, the “ad-
dress” (a, l) of the occupied grid cell is computed by map-
ping its minimum x coordinate (here: xmin = 0) according
to Equation 1, i.e. (0) l=2−−→ (b0/4c , 2) = (0, 2). Then, a
reference to A is stored in the hash table at index h (0, 2).

For an example of the intersection phase consider point
p located at x = 8.6 in Figure 1, assuming the mapping
phase has already been completed. Point p needs to be
checked against all those grid cells that it could be contained
in. To determine exactly those grid cells, p gets mapped
for all existing subdivision levels according to Equation
1. I.e. (8.6) l=0−−→ (b8.6/1c , 0) = (8, 0), (8.6) l=1−−→
(b8.6/2c , 1) = (4, 1) and (8.6) l=2−−→ (b8.6/4c , 2) =
(2, 2). Finally, a hash table lookup at h (8, 0), h (4, 1) and
h (2, 2) yields one possible intersection of p with line seg-
ment C.

IEEE International Conference on Shape Modeling and Applications(SMI'07)
0-7695-2815-5/07 $20.00 © 2007

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:15:52 UTC from IEEE Xplore. Restrictions apply.

3.1. Hash Function

In our algorithm, we use a hash function h to map grid
cell “addresses” of the form (a, b, c, l) ∈ Z4 into a hash ta-
ble. Our hash function maps an infinite set of possible input
keys K onto a finite set of hash values {0, 1, ...,m− 1}:

h (a, b, c, l)→ {0, 1, ...,m− 1} (4)

where m is the chosen hash table size. Hash collisions
are resolved by a chaining approach, i.e. primitives that
occupy a common grid cell at a common subdivision level
get stored in a linked list at the same hash table index.

The most desirable feature of the hash function in our
application is computational speed. In only one collision
detection cycle the hash function usually gets called multi-
ple times for each tetrahedron in the scene (one tetrahedron
typically gets mapped to multiple grid cells) and each ver-
tex in the scene (penetration test over all subdivision lev-
els). This requires a hash function that can be efficiently
computed. Uniform distribution of the hash keys is also im-
portant. Due to the fact that tetrahedra in a typical scene
are clustered into objects, hash keys of those tetrahedra will
usually tend to be very similar to each other and differ only
slightly in one single coordinate of the key. Thus, we need
a hash function with good avalanching properties to avoid
clustering in the hash table.

Due to the fact that |K| � m, hash collisions can not
be avoided altogether but rather need to be minimized. In
order to find a suitable hash function that results in the least
possible amount of hash collisions, we have been testing a
selection of popular hash functions against a sample of the
expected input. The sample was chosen in such a way, that
it only contained unique values. This is usually not the case
in a typical application but allows us to measure the number
of hash collisions solely due to the distribution behaviour of
the hash function itself.

Balls and bins problem Even a hash function that dis-
tributes hash values truly randomly and uniformly produces
a certain amount of hash collisions for a set of unique in-
put data. This problem is well studied and better known as
the balls and bins problem. Suppose that n balls are thrown
into m bins such that all balls choose a bin independently
and uniformly at random (see [13] for an extensive survey
about this problem). The probability for a certain bin to be
missed by a ball is

(
1− 1

m

)
. The probability for a certain

bin to be missed by all n balls is
(
1− 1

m

)n ≈ e−
n
m . This

means we can determine the expected approximate number
of collisions c (more than one ball in a bin) as follows:

c ≈ m · e− n
m − (m− n) (5)

The fact that this number is astonishingly high is related to
the well known birthday paradox.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100
Hash inputs n · 103

Hash collisions c

Random function
XOR hash
DJB2 hash

Figure 2. Expected number of hash collisions
c for n unique input values hashed into a hash
table of size m = 100000 with the XOR and the
DJB2 hash function. The third curve denotes
the number of expected hash collisions for a
hash function, that generates perfect random
and uniform hash values, see Equation 5.

Using Equation 5, we can now determine the approxi-
mate number of expected collisions for a given hash table
of size m for a set of unique inputs of cardinality n. Given
a hash table of size m = 100000 and n = 50000 unique
inputs, we expect c ≈ 10653 collisions for a perfect ran-
dom hash function with uniform distribution. A plot for the
number of expected collisions with a perfectly random and
uniform hash function is given in Figure 2.

Selected hash functions We have tested various hash
functions (see Algorithm 1, 2) for their applicability in spa-
tial hashing, including the XOR hash function used in [15],
among them several more sophisticated hash functions, in-
cluding for example Bob Jenkins’ hash function [7]. How-
ever, our experiments indicated, that simple and fast to exe-
cute hash functions are generally preferable for spatial hash-
ing and result in the fastest possible collision detection time.
Execution speed is here of greater importance than a near
perfect uniform distribution. This is easily explainable. In a
spatial hashing algorithm, hash collisions mainly occur be-
cause of non unique input keys, i.e. one grid cell is actually
occupied by a lot of tetrahedra that clearly all get mapped to
the same hash index. In this case, hash collisions due to im-
perfect hash functions only contribute a very small fraction
to the total number of hash collisions.

While the number of hash collisions of the XOR hash
function on our sample set of input keys very closely resem-
bles that of a perfect uniform hash function, the DJB2 hash

IEEE International Conference on Shape Modeling and Applications(SMI'07)
0-7695-2815-5/07 $20.00 © 2007

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:15:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 XOR hash function, the hash table size m is
usually chosen as a prime number.
procedure xorHash(x, y, z, l)

1: hash← x× 73856093
2: hash← hash⊕ y × 19349663
3: hash← hash⊕ z × 83492791
4: hash← hash⊕ l × 67867979
5: Return hash mod m

Algorithm 2 DJB2 hash function, the hash table size m is
usually chosen as a prime number.
procedure djb2Hash(x, y, z, l)

1: hash← 5381
2: hash← hash× 33 + x
3: hash← hash× 33 + y
4: hash← hash× 33 + z
5: hash← hash× 33 + l
6: Return hash mod m

function produces unexpected results (Figure 2). On our
sample set, the number of hash collisions are much lower
than expected. An analysis of the hash table histogram has
shown, that the DJB2 hash function has produced a slightly
clustered distribution of the computed hash values. The
DJB2 function performs very well on all tested input sam-
ples, but from a theoretical point of view, the XOR hash
function is the better choice. All other tested hash functions
produced equally good results compared to the XOR hash
function, but they all used significantly more instructions to
compute the hash value and therefore slowed down collision
detection performance.

3.2. Grid Cell Size

In a regular grid approach, choosing the right grid cell
size is the key to high performance collision detection. If
the grid cell size is chosen too small, each tetrahedron in
the scene overlaps a large amount of grid cells, the map-
ping phase gets extremely slow (penetration tests however
will get very fast). If the grid cell size is chosen too big, a
lot of tetrahedra are contained in a single grid cell and the
penetration tests therefore get very slow.

Teschner et al. [15] suggest using a grid cell size equal
to the average edge length of all tetrahedra for optimal col-
lision detection performance. As indicated in Figure 3, this
value does not necessarily lead to the minimal possible col-
lision detection time, i.e. with a regular grid approach the
grid cell size that leads to absolute minimal collision detec-
tion time can usually not be exactly predetermined.

Hierarchical spatial hashing overcomes this limitation by
determining a well fitting grid cell size for each single tetra-
hedron automatically and outperforms a regular grid ap-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6
Grid size / average edge length

Collision det. time (seconds)

Hierarchical spatial hashing
Regular grid spatial hashing

Figure 3. Collision detection time of hierar-
chical spatial hashing vs. regular grid spatial
hashing for scene A. The collision detection
performance for the regular grid algorithm is
measured over a wide range of grid cell sizes.
Since the hierarchical algorithm does not de-
pend on a user selected grid cell size, its per-
formance is shown as a constant over all grid
cell sizes.

proach for the grid cell size defined as optimal in the lit-
erature. The small range of grid cell sizes where the regular
grid approach is actually faster than the hierarchical grid
approach (computing the hierarchy information induces a
slight computational overhead) can usually not be deter-
mined by the user and may even vary during simulation.
However, contrary to a regular grid approach the hierar-
chical grid approach adapts its employed grid cell sizes for
all hierarchies according to demand during each simulation
step. The hierarchical grid thus flexibly adapts to any dy-
namic scene setup (imagine a deformable models simula-
tion with growing/shrinking models).

3.3. Hash Table Size

Collision detection performance is directly related to the
size of the underlying hash table. If its size is chosen
too small, many unnecessary hash collisions occur and the
performance of collision detection suffers (see Figure 4).
The size must be chosen such that the hash table provides
enough space for all occupied grid cells in the scene.

Each tetrahedron in our proposed algorithm may occupy
a maximum of 8 grid-cells. Let the total number of tetra-
hedrons in the whole scene be ttotal. Thus, the maximum
hash table size mmax possibly necessary to store all occu-
pied grid cells can be determined as mmax = 8× ttotal. In

IEEE International Conference on Shape Modeling and Applications(SMI'07)
0-7695-2815-5/07 $20.00 © 2007

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:15:52 UTC from IEEE Xplore. Restrictions apply.

0.2

0.4

0.6

0.8

1

1.2

1000 10000 100000
Hash table size m

Collision det. time (seconds)

Figure 4. Collision detection time of scene A
measured against various hash table sizes.
Collision detection time becomes very stable
for a hash table size of ≈ 50000, i.e. the num-
ber of primitives in the scene.

a typical scene, each tetrahedron will usually occupy con-
siderably less than 8 grid-cells. Also, one grid-cell is usu-
ally “shared” by several tetrahedra. In Figure 4, collision
detection time gets very stable for a hash table size m of
m ≈ ttotal. Thus, as a more reasonable choice of the hash
table size we propose to use

m ≈ ttotal (6)

4. Narrow Phase Collision Detection

The result of broad-phase collision detection is a set of
pairs of tetrahedra and vertices that potentially collide. Each
pair needs to be tested for intersection. There are multiple
methods to test if a point p penetrates a tetrahedron. We use
an oriented planes approach, Teschner et al. [15] employ a
barycentric coordinates approach.

The volume of a tetrahedron is enclosed by its four faces
which must be oriented in such a way, that their normals
show outwards of the tetrahedron. Each of those four faces
lies in a unique plane in space. If p lies in the inner half-
space of each of those four planes, then p lies inside the
tetrahedron and a collision has been found. Otherwise, p
lies outside the tetrahedron and no collision has occurred.

The signed distance D of a point x0 from a plane spec-
ified in Hessian normal form is given by the equation D =
n̂ · x0 + p. The sign of D determines, on which side of the
plane x0 lies. If D > 0 then x0 lies in the half-space in-
dicated by the direction of n̂, if D < 0, then x0 lies in the
other half-space. If D = 0, then x0 lies on the plane. Since

we are only interested in the half-space in which the point
x0 lies but not in its the actual distance D from the plane, it
is enough to determine the sign of D without calculating its
actual value:

D = n̂ · x0 + p (7)

⇔ D =
~n

|~n|
· x0 +

d

|~n|
(8)

⇔ D |~n| = ~n · x0 + d (9)

Note that sign (D |~n|) = sign (D) since |~n| > 0.
Given a triangle made up of the three vertices A =

(ax, ay, az), B = (bx, by, bz) and C = (cx, cy, cz) and a
point x0, for which we want to determine in which half-
space of the triangle it lies. We first compute the normal ~n
of the triangle which is given by ~n = (C −A)× (B −A).
Then we compute d = −~n ·A and finally the value for D |~n|
according to Equation 9. The sign of D |~n| then determines
in which half-space x0 lies. To detect an intersection of a
point p with a tetrahedron t, this procedure is applied to all
four faces of t.

5. Results

In this section, we discuss experimental results gathered
from four scenes, representing typical collision detection
problems. All measurements were taken on a Intel Pentium
M 1.5GHz CPU. The underlying C++ code was compiled
with O2 optimization enabled. We have not yet completely
integrated our new algorithm into a deformable models sim-
ulation. Therefore, collision detection times are given for
static setups. Note that this is no deficiency, since the al-
gorithm will always do exactly the same amount of compu-
tations in one simulation step and the computational com-
plexity is independent of the strength of the deformations.
We expect only very slight variations in collision detection
time due to varying numbers of collisions when measuring
in a simulation. Note that the implementation of the regular
grid spatial hashing algorithm is actually a subset of our im-
plementation of the hierarchical spatial hashing approach.
Measured collision detection times of both algorithms are
therefore directly comparable.

As recommended in [15], the grid cell size for the regu-
lar grid algorithm is for each scene set to the average edge
length of the tetrahedrons in that scene.

All scene setups show a performance advantage for our
new hierarchical spatial hashing approach compared to a
regular grid approach. Collision detection in a scene con-
sisting of about 16000 tetrahedrons and 100 objects (scene
B) is possible at interactive rates of about 20Hz on our sys-
tem. Collision detection performance is independent of the

IEEE International Conference on Shape Modeling and Applications(SMI'07)
0-7695-2815-5/07 $20.00 © 2007

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:15:52 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Experimental setup used to measure collision detection performance, red dots mark collid-
ing vertices. Left: scene B, middle: detail of scene B, right: scene A. Scenes C and D are variations
of scene B with less objects and tetrahedra.

Table 1. Experimental scene setups used for
testing collision detection performance of
the hierarchical spatial hashing algorithm

scene objects tetrahedra vertices coll. vertices
A 2 49082 14120 454
B 100 16200 6400 134
C 36 1728 972 304
D 9 432 243 32

number of objects in the scene, our experiments indicate
that it is linearly dependent on the total number of object
primitives. Note that absolute collision detection time val-
ues are pretty similar to those reported in [15] for compara-
ble scenes.

The reader might wonder, if there are typical scenes that
generally favor a regular grid approach over a hierarchical
grid approach. A regular grid approach is optimal, when
all primitives in a scene are of a certain fixed and regular
size. However, our algorithm is actually a generalization of
the regular grid algorithm. In a scene with all same sized
object primitives, our approach “degrades” to a regular grid
approach and thus yields the same performance as a regular
grid approach.

6. Discussion and Future Work

This paper discusses an algorithm that reports collisions
between tetrahedrons, approximated by intersection tests
between vertices and tetrahedrons. The second possible
case of the intersection of two edges of tetrahedrons is
not handled by this algorithm. For regularly and densely
sampled objects the vertex/tetrahedron intersection test is
a good approximation of the actual tetrahedron/tetrahedron

Table 2. Collision detection performance for
the setups defined in Table 1. We compare
performance of the hierarchical and regu-
lar grid spatial hashing algorithm for each
scene. The grid cell size for the regular grid
algorithm is for each scene set to the average
edge length of the tetrahedrons in that scene.

sc. hier. grid [ms] reg. grid [ms] perf. inc. [%]
A 174 220 22.9
B 54 65 20.3
C 5.4 6.1 12.9
D 1.3 1.5 15.4

intersection test and is computationally more efficient.

We have designed our algorithm such that a tetrahedron
occupies a maximum of eight grid cells. This directly influ-
ences the performance and behaviour of our collision detec-
tion algorithm. The mapping-phase gets very fast, the per-
formance of the intersection-phase on the other hand may
suffer slightly due to the relatively coarse resolution of the
spatial subdivision. We believe that this behaviour is favor-
able in simulation environments, where collisions are di-
rectly resolved and thus only very few collisions occur at a
time.

We suggest that the most promising way to further in-
crease the algorithm’s performance is to minimize the num-
ber of primitives per grid cell while trying to keep high
performance in the mapping-phase. This aim could be
achieved by directly scan-converting a tetrahedron into the
grid or by using tighter bounding volumes, e.g. oriented
bounding boxes.

IEEE International Conference on Shape Modeling and Applications(SMI'07)
0-7695-2815-5/07 $20.00 © 2007

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:15:52 UTC from IEEE Xplore. Restrictions apply.

7. Conclusion

In this paper, we have proposed a new algorithm for fast
collision detection between tetrahedral models. We have
analyzed all parameters that influence its performance. We
have compared the algorithm to existing regular grid solu-
tions and find it to be slightly faster in all cases. Its main
advantage however, is its ease of implementation and espe-
cially its ease of use. It delivers high performance without
requiring user defined parameters and flexibly adapts to any
scene setup.

8. Acknowledgments

We would like to thank Zhang Shaoting, Jan Boehm and
Marc Alexa as well as the anonymous reviewers for their
insightful comments regarding this paper. This work was
partially supported by the Natural Science Foundation of
China, grant No. 70581171, and the Shanghai Municipal
Research Fund, grant No. 045118045.

References

[1] S. Bandi and D. Thalmann. An Adaptive Spatial Sub-
division of the Object Space for Fast Collision Detec-
tion of Animated Rigid Bodies. Computer Graphics
Forum, 14(3):259–270, 1995.

[2] M. Garcia, S. Bayona, P. Toharia, and C. Mendoza.
Comparing Sphere-Tree Generators and Hierarchy
Updates for Deformable Objects Collision Detection.
Lecture Notes in Computer Science, 3804:167, 2005.

[3] S. Gottschalk, MC Lin, and D. Manocha. OBB-Tree:
A Hierarchical Structure for Rapid Interference De-
tection. Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages
171–180, 1996.

[4] A. Gregory, MC Lin, S. Gottschalk, and R. Taylor. A
Framework for Fast and Accurate Collision Detection
for Haptic Interaction. Virtual Reality, 1999. Proceed-
ings., IEEE, pages 38–45, 1999.

[5] S. Hadap, D. Eberle, P. Volino, M.C. Lin, S. Re-
don, and C. Ericson. Collision Detection and Prox-
imity Queries. Proceedings of the conference on SIG-
GRAPH 2004 course notes, 2004.

[6] Philip M. Hubbard. Approximating polyhedra with
spheres for time-critical collision detection. ACM
Transactions on Graphics, 15(3):179–210, 1996.

[7] B. Jenkins. Hash functions. Dr. Dobb’s Journal,
22(9):107–115, 1997.

[8] JT Klosowski, M. Held, JSB Mitchell, H. Sowizral,
and K. Zikan. Efficient Collision Detection using
Bounding Volume Hierarchies of k-DOPs. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
4(1):21–36, 1998.

[9] T. Larsson and T. Akenine-Möller. Collision Detec-
tion for Continuously Deforming Bodies. Eurograph-
ics 2001, pages 325–333, 2001.

[10] R.G. Luque, J.L.D. Comba, and C.M.D.S. Fre-
itas. Broad-Phase Collision Detection Using Semi-
Adjusting BSP-trees. Proceedings of the 2005 sym-
posium on Interactive 3D graphics and games, pages
179–186, 2005.

[11] J. Mezger, S. Kimmerle, and O. Etzmuss. Hierarchi-
cal Techniques in Collision Detection for Cloth Ani-
mation. Journal of WSCG, 11(2):322–329, 2003.

[12] B. Mirtich. Efficient Algorithms for Two-Phase
Collision Detection. Practical Motion Planning in
Robotics: Current Approaches and Future Directions,
pages 203–223, 1998.

[13] M. Mitzenmacher, A. Richa, and R. Sitaraman. The
Power of Two Random Choices: A Survey of Tech-
niques and Results. Handbook of Randomized Com-
puting, 1:255–312, 2001.

[14] M.H. Overmars. Point Location in Fat Subdivisions.
Information Processing Letters, 44(5):261–265, 1992.

[15] M. Teschner, B. Heidelberger, M. Mueller, D. Pomer-
anets, and M. Gross. Optimized Spatial Hashing for
Collision Detection of Deformable Objects. Proceed-
ings of Vision, Modeling, Visualization VMV’03, pages
47–54, 2003.

[16] M. Teschner, B. Heidelberger, M. Muller, and
M. Gross. A Versatile and Robust Model for Ge-
ometrically Complex Deformable Solids. Computer
Graphics International, 2004. Proceedings, pages
312–319, 2004.

[17] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zach-
mann, L. Raghupathi, A. Fuhrmann, M.P. Cani,
F. Faure, N. Magnenat-Thalmann, and W. Strasser.
Collision Detection for Deformable Objects. Com-
puter Graphics Forum, 24(1):61–81, 2005.

[18] G. Turk. Interactive Collision Detection for Molecular
Graphics. Master’s thesis, The University of North
Carolina, 1989. Tech Report TR90-014.

[19] G. van den Bergen. Efficient Collision Detection
of Complex Deformable Models using AABB Trees.
Journal of Graphics Tools, 2(4):1–13, 1998.

IEEE International Conference on Shape Modeling and Applications(SMI'07)
0-7695-2815-5/07 $20.00 © 2007

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:15:52 UTC from IEEE Xplore. Restrictions apply.

